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Introduction

Markov Decision Processes (MDPs) provide a formal mathematical framework for modeling sequen-
tial decision-making in environments characterized by stochastic dynamics and rewards Sutton and
Barto (2018). In this project, the author implements an MDP to simulate the behavior of a vir-
tual domestic cat named Rusty (Figure 1), whose internal states (e.g. hunger, fatigue, need for
attention) and spatial context (e.g. room location) influence a series of state transitions over time.

This simulation demonstrates how MDP components- states, actions, transition probabilities, and
a reward function- can be created to reflect behavior in a simplified but structured domain. While
MDPs are traditionally applied to fields such as robotics, control systems, and reinforcement learn-
ing, this project extends their utility to modeling natural behavior in a domestic setting.

By defining a generous state space and incorporating stochastic transitions and reward values, this
experiment explores how policy selection through value iteration can yield interpretable utility-
driven behavior. The project offers a compact and expressive example of MDP modeling and
contributes a novel application that is both relatable and useful.
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Figure 1: Rusty the Cat

MDP Definition

An MDP is formally defined as a tuple (S, A, T, R, ) Silver (2015), where:

e S: a finite set of states.

e A: a finite set of actions.
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e T(s,a,s") = P(s'| s,a): the transition function.
e R(s,a): the reward function.

e v €[0,1]: the discount factor.

The objective is to find a policy 7 that maximizes expected cumulative reward (Bellman Equation):
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System Design: Modeling Rusty the Cat

0.1 States and Actions

To comply with the formal definition of an MDP, a formal set of states and a set of actions were
chosen. The states were chosen based on a combination of Rusty’s possible feelings (e.g. tired,
rested, hungry, fed, needs bathroom, relieved, wants attention, happy) and a location (living room,
bathroom, or bedroom).

#states

rusty_states = [#living room states
"tired_living_room",
"rested_living_room",
"hungry_living_room",
"fed_living_room",
"needs_bathroom_living_room",
"relieved_living_room",
"wants_attention_living_room",
"happy_living_room",
#kitchen states
"tired_kitchen",
"rested_kitchen",
"hungry_kitchen",
"fed_kitchen",
"needs_bathroom_kitchen",
"relieved_kitchen",
"wants_attention_kitchen",
"happy_kitchen",
#bedroom states
"tired_bedroom",
"rested_bedroom",
"hungry_bedroom",
"fed_bedroom",
"needs_bathroom_bedroom",
"relieved_bedroom",
"wants_attention_bedroom",
"happy_bedroom",]

Listing 1: Set of Possible States




A set of actions was also chosen based on these states. Not all actions are effective in all states, as
will be seen in the transition and reward models.

#actions
rusty_actions = ["eat", "go_to_bathroom", "play", "sleep", "groom", "wait"]

Listing 2: Set of Possible Actions

0.2 Transition Function

A transition function 7T'(s, a, s’) defines the probability of transitioning from state s to state s” after
taking action a. In the Rusty MDP, transitions are deterministic for some actions and random for
others, modeling realistic uncertainty in Rusty’s behavior.

Each state encodes a combination of Rusty’s internal need (e.g., tired, hungry) and location (e.g.,
kitchen, bedroom). Actions such as sleep, eat, play, groom, go_to_bathroom, and wait attempt
to satisfy these needs, with varying success rates.

For example, the action sleep in a state like tired_bedroom leads to the new state rested_bedroom
with probability 0.6, and remains in tired_bedroom with probability 0.4. Similarly, attempting to
go to the bathroom from needs_bathroom bedroom has a 0.4 chance of success (transitioning to
relieved bedroom) and a 0.6 chance of failure.

The transitions are implemented in Python using a dictionary keyed by (state, action) pairs,
mapping to lists of (next_state, probability) tuples. Below is an excerpt of the implementation:

action actions:
key = (state, action)
next_states = []

#sleep
action == "sleep":
"tired" state:
next_state = state.replace("tired", "rested")
next_states.append((next_state, 0.6)) #mostly successful
next_states.append((state, 0.4))  #sometimes stays tired
next_states.append((state, 1.0))
#eat
action == "eat":

"hungry" state:
next_state = state.replace("hungry", "fed")
next_states.append((next_state, 1.0))

next_states.append((state, 1.0))

Listing 3: Excerpt of Transition Function for the Rusty MDP

These probabilistic transitions ensure that Rusty’s behavior is not completely predictable, which is
characteristic of a true Markov Decision Process.




0.3 Reward Function

The reward function R(s, a, s’) defines the immediate gain or penalty received when the agent takes
action a in state s and transitions to state s’. For Rusty, this function is designed to capture both
desirable and undesirable behaviors.

Positive rewards are given for fulfilling needs. For instance:
e eat in a hungry kitchen state gives a reward of +100.
e sleep in a tired_bedroom state gives +90.
e go_to_bathroom in a needs_bathroom kitchen state gives +40 if successful.

e play when wants_attention transitions to happy and earns +80.
Penalties discourage inappropriate or unproductive behavior:

e Going to the bathroom in the bedroom (unfortunately an unwelcome action in real life as
well) yields a penalty of —150 due to improper location.

o Waiting while hungry, tired, or needing the bathroom incurs smaller penalties like —16 to
simulate discomfort.

e Performing the wrong action (e.g., playing when hungry) results in negative reward in the
range of —15 to —25.

Finally, Rusty receives small positive rewards (415) for idle but peaceful actions like grooming
when no needs are present. These incentives balance utility across idle and active states and make
the policy more expressive and interpretable.

Implementation

The simulation was implemented in Python using a Markov Decision Process (MDP) engine tailored
to Rusty’s behavioral model. The implementation includes:

e State Space: Created as a list of strings representing combinations of internal needs (e.g.,
tired, hungry, wants_attention, etc.) and room location (1iving room, kitchen, bedroom).

e Action Set: The agent can choose from six actions: eat, sleep, go_to_bathroom, play,
groom, and wait.

e Transition Function: Encodes probabilities of moving from state s to s’ when taking action
a. For example, taking sleepin a tired_1living room state transitions to rested_living room
with probability 0.6, and remains tired with probability 0.4.

e Reward Function: Implements the R(s,a,s’) function as described previously, guiding
Rusty’s behavior by rewarding fulfilled needs and penalizing mistakes or inaction.

e Value Iteration Algorithm: A method was used to compute the optimal utility for each
state. This was followed by a policy extraction step to determine which action Rusty should
take in each state.



value_iteration(states, actions, transition_probs, rewards, gamma, threshold=0.01):

utilities = {s: 0 s states}
True:
delta = 0
new_utilities = copy.deepcopy(utilities)
s states:
action_values = []
a actions:

transitions = transition_probs.get((s, a), [1)
value = 0
s_prime, prob transitions:
reward = rewards.get((s, a, s_prime), 0)
value += prob * (reward + gamma * utilities[s_prime])
action_values.append(value)
action_values:
new_utilities[s] = (action_values)
delta = (delta, (new_utilities[s] - utilities[s]))
utilities = new_utilities
delta < threshold:

utilities

Listing 4: Value Iteration Function

extract_policy(states, actions, utilities, transition_probs, rewards, gamma):

policy = {}
s states:
best_action = None
best_value = ("—inf")
a actions:
value = 0
s_prime, prob transition_probs.get((s, a), [1):

reward = rewards.get((s, a, s_prime), 0)
value += prob * (reward + gamma * utilities[s_prime])
value > best_value:
best_value = value
best_action = a
policy[s] = best_action
policy

Listing 5: Policy Extraction Function

In the value_iteration function, each state is initially assigned a utility value of zero. The al-
gorithm then iteratively updates these utilities using the Bellman equation. For each state, it
computes the expected utility of each possible action by considering the transition probabilities to
successor states, the immediate rewards, and the discounted future utilities (using gamma). The
value of a state is updated to the maximum expected utility across all actions. This process con-
tinues until the maximum utility change across all states (delta) falls below a specified threshold,
indicating convergence.

The extract_policy function then uses the computed utilities to determine the optimal policy.
For each state, it evaluates the expected utility of each action (using the same Bellman update
logic), and selects the action with the highest value as the best decision for that state. The result




is a mapping from each state to its optimal action, forming a complete policy for the agent.

Results and Analysis

The final policy generated by value iteration defines the optimal action for Rusty in each possible
state. In general, the policy shows that Rusty behaves in a goal-oriented manner- taking actions
that directly address his needs with minimal delay. The chosen gamma value of 0.8 indicates that
Rusty values more long-term reward (closer to 1) rather than only immediate rewards (closer to 0).

For example:

e States such as tired_living room, tired kitchen, and tired bedroom all map to the sleep
action, indicating a preference for rest when tired.

e Similarly, all hungry_x states lead to the eat action, showing Rusty’s prioritization of food
when hungry, regardless of location.

e States like wants_attention bedroom and wants_attention kitchen correctly map to play,
which satisfies Rusty’s social needs.

e Interestingly, in non-urgent or satisfied states such as rested kitchen or fed bedroom, the
optimal action is groom, suggesting a preference for self-care when no pressing needs are
present (hungry, tired, needs bathroom, etc.).

Policy: {’tired_living_room’: ’sleep’, ’rested_living_room’: ’groom’, ’hungry_living_room

’: ’eat’, ’fed_living_room’: ’groom’, ’needs_bathroom_living_room’: ’go_to_bathroom’,
’relieved_living_room’: ’groom’, ’wants_attention_living_room’: ’play’, °’

happy_living room’: ’groom’, ’tired_kitchen’: ’sleep’, ’rested_kitchen’: ’groom’, ’
hungry_kitchen’: ’eat’, ’fed_kitchen’: ’groom’, ’needs_bathroom_kitchen’: ’
go_to_bathroom’, ’relieved_kitchen’: ’groom’, ’wants_attention_kitchen’: ’play’, ’
happy_kitchen’: ’groom’, ’tired_bedroom’: ’sleep’, ’rested_bedroom’: ’groom’, ’
hungry_bedroom’: ’eat’, ’fed_bedroom’: ’groom’, ’needs_bathroom_bedroom’: ’play’, °’
relieved_bedroom’: ’groom’, ’wants_attention_bedroom’: ’play’, ’happy_bedroom’: ’
groom’}

Listing 6: Final Policy Extracted

A somewhat unusual case occurs in needs_bathroom_bedroom, where the policy selects play instead
of go_to_bathroom. This reflects the penalty assigned to attempting bathroom relief in the bedroom
(-150) and the transition probabilities that make successful relief less likely in that room. Rusty
appears to avoid this risky behavior in favor of a safer action.

To better understand the behavior of the system, utility values were visualized using a heatmap
via the seaborn library (see Figure 2). States where Rusty has met his needs (e.g., happy kitchen,
relieved living room) show higher utilities, while high-need states or locations associated with
penalties (e.g., needs_bathroom bedroom) exhibit lower utility values.

Overall, the policy reflects an interpretable and reasonable behavioral model. It demonstrates how
reward shaping and transition modeling can encode real-world constraints and preferences, even in
a stylized simulation.




Utility Heatmap by Room and State Condition
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Figure 2: Utility Heatmap

Discussion

This experiment showed that Rusty was mainly utility-driven, avoiding unfavorable actions and
instead being more in favor of ones that met his immediate needs. Given the probabilities and
rewards as they were defined, this was not entirely surprising, even with large penalties for unfa-
vorable actions. These results reflect what one might expect from a real cat- the behaviors were
mostly intuitive.

The model strength worked well for its intended purpose, providing a simplified structure of key
needs and actions in Rusty’s day. A clear policy was extracted from the framework, and the
probabilistic transitions added some realism to the simulation.

Some limitations of this experiment were a limited state and action space. This was mainly due
to the interest of time, as a larger state space could quickly grow out of hand and may not be as
easily code-able. The model is extremely simplified, showing no other external stimuli like time of
day, needs decaying over time, etc. There is also no memory or learning over time from Rusty.

Possible improvements for this experiment would be to change the gamma values (to reflect the
importance of immediate vs long-term rewards), change the reward/penalty values, and add more
states or external stimuli or behavior, like energy decay or time of day, seeing how these affect the
final utility values.

Some real-world takeaways from this experiment include the application of MDPS to robotic pets
or user agents, modeling decisions in healthcare or robotics, and teaching Al through relatable
systems.
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